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1. Introduction

Models of opinion formation in the socio-physics literature examine the dynamics of beliefs [1,2],
language [3-5], culture [6], voting preference [7-9] and rumour propagation [10]. Specifically,
these models examine how individuals within communities influence each other and reach (or
drift from) consensus [11,12]. Key to understanding these dynamics is the structure which defines
how individuals interact. Social and complex networks are used as models, e.g. the

(a) naming game [3-5,13,14],

(b) voting model [7-9],

(c) Bass model of innovation diffusion [15] and
(d) Bayesian models of ‘trust’ [16].

We point the reader to [17] for an in-depth summary of these models. Cellular automata [15]
and agent-based modelling have been used [2,18] to study the dynamics of opinion formation.
On the other hand, a mean-field model approach can be used if the goal is not to understand
the dynamics of opinion formation in an individual, but instead how proportions of the total
population change over time. The spread of ideas has been compared to epidemiological models,
like the SIR (susceptible-infectious-recovered) model [10,19]. Socio-physical models draw upon
models in statistical physics, like the Ising model [20-22]. Our work draws on the mean-field
model derived in Marvel et al. [23]. We are not the first to draw from this model. Variations of this
model appear in which parameters are added to control for the ‘charisma’ [8] of the agents, their
‘friendliness’ [24] and stubbornness [25]. An underlying assumption for this mean-field model is
that all interactions occur on the same time scale.

We propose and analyse an extension of the mathematical mean-field model provided in [23].
In particular, the mean-field model proposed by Marvel et al. [23] is a three-state model of
opinion formation. The three states are A, B (not A) and AB (undecided). We will henceforth
call a group for which the three-state model holds a city. The interactions between cities will be
modelled as an ordinary differential equation (ODE) system on a graph, where the dynamics
on each node are those for the three-state model, and the dynamics between the nodes follows
an interaction rule which is similar to that which leads to the three-state model. Our model
resembles [26], in which laws of motion for the probabilities of each individual holding an opinion
are derived (also see [27], where the modelling and analysis draw from ideas in low-temperature
thermodynamics).

A primary motivation for our model is the question of spatial variation in opinion formation.
In the USA, any map associated with a presidential election makes clear that, while there
is often local (county, zip code) consensus on a candidate, there is huge spatial variation in
voting preference. In particular, there are clusters of local communities which will agree on a
candidate. Governing this clustering phenomena is the fact that opinions within a community
are not solely governed by the interactions within that same community. Outside voices, e.g.
the media, scattered friends and family, migrants and tourists, all play a role in the formation
of opinions at a local level. Therefore, isolated communities can be thought to be connected
by weighted, directed edges where each incoming edge weight is the probability of interacting
with individuals from the source community. Our model allows for the possibility that a city
like New York can exert more influence on Uncertain, Texas [28] than Uncertain does on
New York.

In our analysis, we address the question of whether or not there is pluralism. As defined
by the Oxford Dictionaries, pluralism is ‘a condition or system in which two or more states,
groups, principles, sources of authority, etc., coexist.” Pluralism is often discussed within the
contexts of politics, religion, sociology and philosophy, among other arenas. In the context of
this paper, pluralism will mean a steady state of the mean-field ODE where there is no majority
opinion. Alternatively, when we say the system has consensus, that means that there is a majority
opinion associated with the steady-state solution. In the discussion surrounding the mathematical
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definition of pluralism in §2c, we briefly discuss how the results contained herein may change if
we change the threshold for consensus.

The paper is organized as follows. In §2, we look at the three-state ODE model for one city,
and analyse it in terms of consensus and pluralism. In this analysis, we say the city has consensus
if more than 50% of the population agrees on an opinion; otherwise, there is pluralism. In §3, we
extend the original ODE model to an ODE model on a directed graph. The underlying assumption
here is that groups in one city interact with groups in another city. In §4, we analyse the case of
two interacting cities, and study how the presence of zealots (those who hold an opinion, and will
not change their mind), and the interaction between the cities, influence the types of consensus
that are possible. In §5, we consider the dynamics associated with having many interacting
cities. Herein, we combine a bifurcation analysis with our consensus/pluralism analysis to better
understand the condition(s) which lead to clustering of opinion on a network in which there
are no zealots. We also consider the case when one of the cities contains zealots. For the ease of
presentation, we consider only a network on a cycle graph in the first case, and a cycle graph with
a hub in the second case. However, the ideas naturally generalize to networks on other types of
graphs. Finally, in §6 we briefly summarize our results and provide some questions for future
research.

2. The one-city model
(@) ODE model

Our general model considers interactions between multiple communities, which hereafter will be
referred to as cities. The base model for one city will be that presented in [23]. The base model
is driven by dyadic interactions between individuals who hold opinions A, B (which is ‘not A”)
and the moderate, or undecided, AB. Additionally, there are zealots, P of believers of A and Q of
believers of B, who do not change their opinions after interacting with others. The interactions are
governed by the set of rules presented in table 1.

For the ODE model we set:

(a) a, proportion of the population holding opinion A whose opinion can change;
(b) b, proportion of the population holding opinion B whose opinion can change;
(c) p, proportion of the population who are zealots in A;
(d) g, proportion of the population who are zealots in B;
(e) m, proportion of the population holding opinion AB.

All of these numbers are non-negative. The number of moderates, m, is related to the other
populations via

m=ma,b,p,q) =1~ @+p)—(b+9q.
As all of the variables are proportions, the variables must satisfy the following bounds:
O<a+p=<1, 0<b+g=<1 and O<m<1. (2.1)

Taking the limit of a large population and a small time step between interactions, the governing
rate equation (after a possible time renormalization) is the ODE

a\ . fa+p _(m  —a
(et) ()

Here overdot denotes differentiation with respect to time. For the ODE model (2.2), it is not
difficult to check that if the initial conditions satisfy the physical bounds of (2.1), then the bounds
will be satisfied for all > 0.
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Table 1. Interactions that change the membership in each of the subpopulations. The subpopulations of zealots, P and Q, are
constant.

speaker listener pre-interaction listener post-interaction

(b) Fixed point analysis

To classify regions in parameter space for which there is consensus or pluralism, we must analyse
the fixed points for the ODE model. If the fixed point is stable, then it is an attractor, and realizable
for an appropriate set of initial conditions. If the fixed point is unstable, then its unstable manifold
divides the phase space, and allows for multiple stable fixed points to be realized (depending
upon the initial condition). In Marvel ef al. [23], there was a fixed point analysis of (2.2) under
the assumption that opinion B has no zealots, g =0. This analysis was later extended by Wang
et al. [29] for the case that both populations had zealots. For the sake of clarity we now recreate
some of that analysis here.
The fixed points are found by solving a coupled system of nonlinear equations,

O=detM)=m? —ab, 0=M (‘Z j: 5) . 2.3)

We first note that no matter the number of zealots, the proportion of moderates is no more than a
third of the total population:
Proposition 2.1. At a fixed point, 0 <m < %
Proof. Since m? = ab, by the arithmetic mean-geometric mean inequality,
m=~/ab < 3(a +b).
Upon using the inequality,a + b+ m=1—-p—g<1,

3m
2

=

m—}—1m<1(a—|-h-|-m)<1
—_ — _ g
2 —2 -2

[ESTE

(i) One population of zealots

First assume that only opinion A has committed believers, 4 =0 (this situation was already
covered in [23]). We will consider this scenario again in §4 when, in the two-city model, we
analyse the situation where one city has zealots, but the other city does not. When p =0, the
fixed points are (1,0), (0, 1), (%, %). The first two fixed points are stable nodes, and the last fixed
point is a saddle point whose unstable manifold acts as a separatrix in the (4, b)-phase space. For
p > 0 the continuation of the first fixed point is (1 — p, 0), and it is a stable node for all values of p.
We consider the fixed points that emanate from the other two.

Proposition 2.2. When q =0, an additional set of two fixed points for 0 < p < py,, where

3
po=1— % ~0.1340

is given by (a,b) = (a+, b+), where

ai=%(1—4pﬂ:m>, by=1-2p—2as.
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Figure 1. A cartoon of the stability diagram for the fixed points of the system (2.2) when g = 0. The vertical axis is the
proportion of non-zealots who hold opinion A. The curves represent the a-values associated with stable fixed points. Here,
Py ~ 0.1340 represents the saddle-node bifurcation point between a stable node and a saddle point. There is always consensus.
Forp > py, there is consensus only for opinion A, while for p < p;, there can be consensus for either opinion.

The fixed point (a—,b_) is a stable node, whereas (ay,by) is a saddle point (see figure 1 for a plot of the
a-values of the stable fixed points).

Proof. Setting
x=+a and y=+b,

the first equation in (2.3) becomes
m=xy ~» x2+xy+y2:1—p, (2.4)
and the second and third equations collapse to
xy(x2 +p—xy)=0.

The solution y =0 leads to ¥=1- p, which has already been discussed. Therefore, we are only
interested in the other solution,

2 2
y=FP po @tp”
be a

Plugging this solution into (2.4) yields the alternative expression presented in the proposition
statement,

Y=1-2p—-22* ~ b=1-2p—2a

Plugging this expression for y back into (2.4) and simplifying leads to the quartic equation

3¢t — (1 —4p)® +p*=0 ~ x2=%<1—4p:l:,/1—8p+4p2>.

V3
1=8p+4p° =4 —p)p—ps), pe=1%—,
we know this fixed point is valid only for p <p_ =pyp. The proof for the analytic expression of
the fixed point is now complete. The stability argument is left as an exercise for the interested
reader. |
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Figure 2. A cartoon of the stability diagram for the fixed points of the system (2.2) when p = g. The vertical axis is the
proportion of non-zealots who hold opinion A. Here, p. ~ 0.1910 represents the transition point between consensus and
pluralism (the pitchfork bifurcation of fixed points occurs at p = 0.2). There is consensus for p < p., and pluralism otherwise.

(ii) Two populations of zealots

We now suppose that each opinion has an equal number of zealots, p = g (the problem with p #g
is considered in [29]). This is also what will be assumed when we consider a two-city model in §4.
For p > 0, the continuation of the fixed point (%, %) is

1-2p 1-2p
bo)=(—F, =),
(a0, bo) ( 3 3 )

This follows from the fact that the fixed point equations (2.3) collapse to
m=a ~s 1=-2a—-2p=a -~ a:%(l—Zp).

Clearly, the fixed point is only physical for 0 <p < 1. The limit p=g= % corresponds to each
opinion having only zealots. Regarding the stability of this fixed point, we have the following
proposition.

Proposition 2.3. The fixed point (ag, bo) is a saddle point for 0 < p < %, and a stable node for % <p< %
There is a bifurcation of critical points at p = %

Proof. The linearization of the vector field at the fixed point is

A—l —(1+4p) p—2
T3\ p-2 —-(+4p)’

which has the eigenvalues
M=—(1-p) and ir=1(1-5p).

The stability result follows upon noting that A1 < 0, and A, changes sign atp = % The existence of
the bifurcation follows from A, changing sign at p = % |

The fixed point (ag, bo) exists for all values of p. Regarding the existence of the additional fixed
points that emanate from the bifurcation at p = % (figure 2), we have the following proposition:

Proposition 2.4. When p =g, an additional set of two fixed points for 0 <p < % is given by (a,b) =
(a+,as), where

ai:%<1—3p:|: (1—p)(1—5p)>.

Each of these fixed points is a stable node.
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Proof. Setting
x=+a and y=+b,

the first equation in (2.3) can be rewritten as
m=xy -~ x2+xy+y2=1—2p, (2.5)
and the second and third equations collapse to
YZ+p) =X +p)=0 ~ @y—pE-y=0.

The solution x =y was already covered in proposition 2.3, so we are only interested in the other

solution,
2

a

p p P

y = ; s
Alternatively, plugging this back into (2.5) gives
¥=1-3p—x> ~ b=1-3p—a

Plugging the first expression for y back into (2.5) and simplifying leads to the quartic equation

(1= +p?=0 ~ =1 (1—3pi,/(1—p)(1—5p)>.

As a=2x?, upon using b=1—3p —a we get the desired expression for the b-component of the
fixed point. The proof for the analytic expression of the fixed point is now complete. The stability
argument is left as an exercise for the interested reader. n

(c) Pluralism and consensus

The dynamical picture through the stability diagram is complete for our purposes. We now use
these dynamical results to explore the conditions which invoke pluralism in the system. Numerical
simulations indicate there are no closed orbits for the ODE system, no matter the values of p and
g. Consequently, in our definition we only need consider the stable fixed points, as initial data
will generically lead to the subsequent solution converging to one of them. Mathematically, in
this paper we define pluralism as follows.

Definition 2.5. Pluralism is present within the system when a stable fixed point satisfies 0 <
a+p,b+g<0.5. We say that consensus is present within the system when all of the stable fixed
points satisfy eithera +p > 0.5,or b +¢q > 0.5.

Remark 2.6. It may be more accurate to say that our definition of consensus really only means
majority. As there is no precise definition of consensus, we work with our current definition. It
is important to point out here that changing the threshold for consensus, e.g. increasing it to 0.6,
may lead to qualitatively different conclusions than those presented herein. In general, increasing
the threshold will cause the set of values of p and g for which there is pluralism to grow, e.g. the
‘bubble’ in figure 3 will get larger. In particular, for p =g (whose bifurcation diagram is given in
figure 2), if the consensus threshold is increased to 0.6, then the critical proportion decreases to
pe = (61 — 44/115) /95 ~ 0.1906.

By studying the dynamics of the system—namely, through the fixed point analysis—we are
able to determine the condition on the proportion of zealots which allows for pluralism to
exist with respect to our opinion model. First suppose q=0. The fixed point analysis shows
that there is only one stable fixed point for p > p}, given by (a,b) =(1 —p,0). Asa+p =1, there
will always be consensus associated with this fixed point; indeed, the entire population will
necessarily have opinion A. On the other hand, using the results of proposition 2.2 there will also
be consensus associated with the other fixed stable fixed point,asb=1—2p —a > % forp <pp.In
conclusion, there is always consensus, and the value of p simply determines if either opinion can
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Figure 3. The consensus/pluralism diagram for the one-city system (2.2) when 0 < p + g < 1. There will be consensus for
p,q > 0.5, so that part of the diagram is not shown. The horizontal axis is the proportion of zealots who hold opinion 4, and
the vertical axis is the proportion of zealots who hold opinion B. There is a bubble of pluralism which is symmetric with respect
to the line g = p for 0.1910 < p < 0.5; otherwise, there is consensus. (Online version in colour.)

become dominant, or only one opinion is dominant. A summary cartoon for this analysis is given
in figure 1.

Now suppose p = q. The fixed points are provided as in propositions 2.3 and 2.4. If p > %, there
is only one stable fixed point, and it is straightforward to check that this fixed point is associated
with pluralism. Consider the fixed points for p < % The zeros for the nonlinear system (2.3) are
invariant under (g, b) — (b, a), so it is sufficient to determine those values of p for which

P+%<1—3p+ (1—p)(l—5p))>%_

Using the expression for the fixed point, and routine algebra applied to this inequality, provides
consensus for

05p<pc:%<3—«/§)~0.1910;

otherwise, there is pluralism.

A summary cartoon for the analysis is given in figure 2. The a-value of the stable fixed point(s)
for each value of 0 <p < % are the solid curves. For p < %, the b-value of the fixed point is given
by b = p?/a. There is consensus for p < pc, and pluralism otherwise. The opinion on which there is
consensus depends upon the initial condition. In all cases, the number of moderates, m=1—a —
b — 2p, is bounded above by %

We finally consider the full picture where the number of zealots satisfies the constraints 0 <
p +q < 1. There is no analytic formula for the fixed points, so we rely upon the Matlab toolbox
MATCONT to numerically generate the fixed points (see [30]). The results are presented in figure 3
(also see [31, fig. 1] for the related stability diagram which divides the number of possible fixed
points for the system). There is always consensus if either of p or g is greater than 0.5. For 0 <p,q <
0.5, we see there is a bubble of pluralism; otherwise, there is consensus. The bubble is symmetric
with respect to the line p =g, which is a reflection of the symmetry (a,b,p,q)— (b,a,q,p). The
lower limit of the bubble, p = g = p., follows from the analysis associated with the case when the
proportion of zealots is equal. As for the opinion on which there will be consensus, in the lower
right it will always be opinion A, in the upper left it will always be opinion B and in the lower left
the answer depends on the initial condition.
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3. The n-city ODE model

Recall that a city is a group for which the three-state mean-field model of opinion formation is
operative. We now wish to extend our model to a collection of # cities, each of which in the
absence of external influence is governed by the three-state mean-field model (2.2). We imagine
that each city is a node on a graph (for an example of three cities, see figure 4). Foreachk=1,...,n
we apply the subscript k to each of the variables in (2.2). For the interactions between the cities,
we have in mind the equivalent of table 1 (table 2). Whereas the mean-field model is derived as
a limit of individual interactions, the model for multiple cities assumes that groups in one city are
trying to influence groups in other cities.

Letijx > 0 denote the influence between the groups in city j with the groups in city k, and set I =
(ijk) € Mu(R) to be the influence matrix. The influence matrix forms an opinion formation network,
and through the influence matrix I we have a connected graph with weighted and directed edges.
The influence matrix need not be symmetric. A cartoon example is provided in figure 4, which
has the associated influence matrix,

i1n i1y 0
I=|i1 0 i3
0 i3p i3s3

We normalize the influence matrix,
n
i<l k=1,2,...,n (3.1)
j=1

In other words, the column sum for each column in the influence matrix is bounded above by one.
In particular, each individual entry is also bounded above by one. If the column sum were one for
each column, then the influence matrix would not only be an adjacency matrix for the graph, but
it would also be a left stochastic matrix.

The appropriate modification to the original equations leads to the system fork=1,2,...,n,

n
. Zijk(ﬂjJer)
W)~ | L M= "%, (3.2)
by . —by  my

> (b +4))

The influence matrix normalization of (3.1) guarantees that if the initial conditions satisfy the
physical bounds fork=1,2,...,n,

O<ar+pr<1l, O0<br+gr<1 and O0<m<1, (3.3)

then these bounds will be satisfied for all ¢ > 0.
The system (3.2) has a more compact formulation. Set the individual opinion and zealot

vectors,
ag Pk
o = and zp=

and let the total opinion and committed vectors be the concatenation,

01 Z1
02 z3

O=| |eR*” and Z=| . |eRrR*.
On Zn

Upon setting M to be the block-diagonal matrix,
M = dlag(MllMZ/ e /Ml’l) € MZH(R)/
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Figure 4. A cartoon of an opinion formation network with three cities. The variable i represents the individual influence of
node j on node k. The total influence on a node, which is the sum of all the individual influences on that node, is normalized
to be less than or equal to one.

Table 2. Interaction rule between city j and city k.

listening group listening group

speaking group pre-interaction post-interaction

the system (3.2) becomes
0=M1"'® )0 + Z), (34)

where I, € M>(R) is the identity matrix.

4. (Case study: two cities

To begin to understand how the interaction between cities affects consensus and pluralism within
each individual city, we start by analysing the case of two cities. We will simplify the analysis by
assuming the column sum for each column of the influence matrix is one. A cartoon of the two-
city network is given in figure 5. Here, i1 represents the influence that city 1 has on city 2, and i,
is the influence that city 2 has on city 1. The equations of motion (3.4) in this special case are

01 =M;1[(1 —iz)(01 + c1) + i2(02 + 2)] 1)
and 02 = Ma[ir (01 + e1) + (1 — i1)(02 + €2)]. '

We will investigate the effects of both the zealots and the influence factors on consensus and
pluralism. We will consider several special cases, and unless said otherwise the analysis will be
simplified by assuming i} =iy =i.

(a) Zero zealots with equal influence

We begin by examining the special case where neither city contains zealots, ¢; =c; =0. With i =
i1 =1y the system (4.1) collapses to

01 =M1 [(1 —i)o1 + ior]
and 02 =M [iog + (1 —i)oz].
These equations are invariant under the mappings,

(01,02) = (02,01) and (a1,by,a2,b2) = (b1,a1,b2,a2).
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Figure 5. A cartoon of an opinion formation network with two cities.

(@) a (b) a
1 1
N\
\

aup - aup - '

Q4own T / Yown T J
—_—_ — —
i 1! i 1!

Figure 6. A cartoon of the stability diagram for the case of two cities, each of which has zero zealots. Only stable fixed points
are represented. The horizontal axis represents the changing influence factor i = i; = i, and the vertical axis represents the
proportion of the population holding opinion A within city 1(a) and city 2 (b). The heavy solid (blue) horizontal lines correspond
to the solution in which both populations share the same opinion 4, and the heavy dashed (black) horizontal lines correspond
to the solution in which both populations share the same opinion B. The thin solid (green) curve is the solution in which A
is the majority opinion in city 1, and B is the majority opinion in city 2, whereas the thin dashed (red) curve is the opposite
situation. This differing of opinion between the two cities is possible only for i < i ~ 0.167. The values on the vertical axis are
ayp ~ 0.746 and dgown ~ 0.054. (Online version in colour.)

Consequently, when plotting a bifurcation diagram as a function of i, it will be sufficient to plot
only two of the four variables, a1 and a5.

One set of solutions is 01 = 03 € {e1, e}, where e € R? is the standard unit vector. In other
words, everyone in each city holds the same opinion. These fixed points are stable for any value
of i. Regarding other possible solutions, a bifurcation diagram can be generated using AUTO [32]
or MATCONT [30]. A cartoon of the final results is given in figure 6. The horizontal axis is the
influence factor 7, and the vertical axis is a; and ap. The curves represent stable fixed points (the
unstable fixed points are not plotted). The solid/dashed thick lines (blue/black) correspond to
the stable solution where both cities share the same opinion (solid is A, and dashed is B). The
solid/dashed thin curves (green/red) correspond to the solution where one city has a majority
who support opinion A, whereas the other has a majority who support opinion B. The transition
values are numerically determined,

ic~0.167, aup~0.746 and agown ~ 0.054.

We see from the bifurcation diagram that both cities are always at a consensus. The critical
influence value, i. ~0.1667, in which the stability diagram goes from having four stable fixed
points to two stable fixed points, plays the following role. For i > i, there is strong consensus:
both cities have opinion A, or both cities have opinion B. However, for i < i. it is possible to have
consensus in which one city supports opinion A and the other city supports opinion B.
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Figure 7. A cartoon of an opinion formation network with two cities when there are zealots in city 1, p; = p, and no zealots
in city 2.
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Figure 8. The consensus diagram for the case of zealots only in city 1. There is always consensus. The opinion on which consensus
can occur in each ity is labelled in the various regions. To the right of the vertical curve there in consensus in city Tonly on opinion
A. Left of the vertical curve the situation is qualitatively the same as that for the case of no zealots: there will be consensus,
but the opinion being A or B depends upon the initial data, and the level of inter-city influence. (Online version in colour.)

(b) Committed believers in one city with equal influence

We now assume there are zealots in city 1 with p; =p and g1 =0, and no zealots in city 2, pp = > =
0. A cartoon of the network is presented in figure 7. In the absence of inter-city influence, we know
from our one-city analysis that if p > p, city 1 will have full consensus on opinion A; otherwise,
there will be consensus on either opinion. As for city 2, there will be consensus on either
opinion.

To understand the situation for i > 0, we find the stable fixed points by using MATCONT to
numerically continue from the known i = 0 solutions. In doing so we find two curves on which
saddle-node bifurcations occur. These are marked with a thick solid (blue) curve in figure 8.
Although the coupled system is always at consensus (like the case of no zealots), we find that
these curves separate (p, i)-space into four distinct regions regarding the type of consensus that is
possible.

First, we note that a solution which exists for all i is (1 — p, 0, 1, 0), which corresponds to both
cities being in full agreement on opinion A. This is the only stable solution in the large upper
right region in figure 8, i.e. the region in which both p and i are sufficiently large. To the right of
the vertical curve, i.e. p > 0 is sufficiently large, city 1 will always have consensus on opinion A;
however, below the horizontal curve it is possible for city 2 to arrive at either opinion. There are
more possibilities if the proportion of zealots is not too large (left of the vertical curve). If the inter-
city influence is sufficiently large, then both cities will arrive at consensus on the same opinion.
On the other hand, for small inter-city influence there are four different types of consensus which
are possible. The one that is achieved depends upon the initial conditions.
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Figure 9. A cartoon of an opinion formation network with two cities when each city has an equal number of zealots of the
opposite persuasion, p; = ¢;.

(c) Symmetric zealots with equal influence

We now assume that each city has an equal proportion of zealots of the opposite persuasion,
p1=4g2 =p with g1 =pr =0 (figure 9). When there is no influence, i =0, we know from §2c that
each city will achieve consensus. The consensus must be of one opinion for a sufficiently large
proportion of zealots; otherwise, it can be of either opinion. Moreover, if in city 1 p; > pp, ~ 0.1340,
then the consensus there will be opinion A, and if g > pp, the consensus in city 2 will be opinion
B. Finally, we saw in §4a that in the absence of zealots consensus will be achieved in both cities,
and if i is sufficiently large, the consensus in both cities will be of the same opinion.

To determine the region in (p,i)-space for which there could be consensus for i > 0 we first
need to find all of the stable fixed points. When p > 0.5, there is always consensus (A in city
1 and B in city 2); thus, we only need consider p < 0.5. The fixed points are found by using
MATCONT and continuing from the known i=0 solution(s). For p; =41 <pp the bifurcation
diagram is qualitatively similar to that of figure 6 for the problem of no zealots: there will always
be consensus, and the form of the consensus depends upon the initial conditions. Consequently,
we look to better understand what happens when p > py,, i.e. when in the case of zero inter-city
influence each city is at consensus.

When i =0, there is a unique solution, (a1,b1,a2,b2) =(1 —p,0,0,1 —p). If p > 0.4, we find the
continuation of this solution to be the only stable solution; moreover, it always corresponds to
consensus. The situation becomes more interesting for pp < p < 0.4. First, when p = 0.4, there is a
bifurcation of the continued fixed point when i = 0.5. A ‘bubble’ of stability appears, and each end
of the bubble connects to the main branch via a pitchfork bifurcation. A sample plot for p =0.383
of such a bifurcation is given in figure 10c,d. Figure 10a,c corresponds to the total proportion of
those who hold opinion A in city 1, a1 + 0.383, and figure 10b,d gives the proportion of those
who hold opinion A in city 2. The thick solid (black) curves correspond to the solution which is
the continuation of the i =0 solution. The thin solid (blue) curves are in correspondence, as are
the thin dashed (red) curves.

As p continues to decrease, the right-most bifurcation point occurs for i > 1.0, so it is no longer
physically relevant. However, for the left-most point the pitchfork bifurcation is still supercritical
for p > 0.3075. Further decreasing the value of p reveals that the supercritical bifurcation becomes
subcritical at p ~ 0.3075, and for smaller values of p there is hysteresis. A sample plot for p =0.25
of such a bifurcation is given in figure 10a,b. Figure 10a,c corresponds to the total proportion of
those who hold opinion A in city 1, a1 4 0.25, and figure 10b,d gives the proportion of those who
hold opinion A in city 2. Again, the thick solid (black) curves correspond to the solution which
is the continuation of the i =0 solution, the thin solid (blue) curves are in correspondence, and
so are the thin dashed (red) curves.

The stability diagrams become even more complicated as p — 0, so we now focus on the
consensus/pluralism diagram, which is given in figure 11. Here, we see that there is consensus
in both cities except in the region marked ‘pluralism’. In that region, one city will be at consensus
(A in city 1, and B in city 2), but the other will not. The horizontal bounds for which it is possible
to have pluralism in at least one city is approximately 0.1726 < p < 0.3872. Regarding the regions
where the consensus is on A in city 1 and B in city 2, the subscript ‘s’ means that the proportion of
those who hold opinion A in city 1 is precisely that who hold opinion B in city 2, and the subscript
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Figure 10. The stability plots for p = 0.25 (a,b), and p = 0.383 (c,d). Only stable solutions are plotted. The plots in (a,c) are
fora; + pversus i, and those in (b,d) are for a, versus. i. In (a,c), we plot the total proportion of those who believe opinion A in
city1,and in (b,d) we plot the total proportion of those who believe opinion A in city 2. The thick solid (black) curve corresponds
to the continuation of the i = 0 solution where each city is at full consensus with differing opinion. The thin solid (blue) curves
correspond to each other, as do the the dashed (red) curves. (Online version in colour.)

1.0
08l (A.A).BB (A.B),
pluralism
06
) (A,4), (A, B)
! (B,A), (B, B)
04r
02¢

0 0.1 0.2 0.3 0.4 0.5
p

Figure 1. The bifurcation and pluralism plot for the case p; = ¢, = p. There is consensus in both cities except in the region
marked ‘pluralism’. In that region it may be possible there is consensus in one city, but not the other. The subscript ‘s’ means that
the proportion of those holding opinion A in city 1is the same as those holding opinion Bin city 2. The subscript ‘a’ means that,
while there is still consensus in each city, this particular symmetry is broken. (Online version in colour.)

‘a’ means this symmetry has been broken (through the bifurcation associated with figure 10c,d).
In conclusion, unlike the previous cases the presence of zealots and inter-city influence allows
for a region where one of the cities will not reach consensus. Outside of that region, either the
inter-city influence is the dominant effect (left of the pluralism region), or the presence of zealots
is the dominant effect (right of the pluralism region).
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5. Dynamics with many cities

We finally consider the problem of having many interacting cities. The goal here will be to
use our understanding of the stability problem, which was used to generate the previous
consensus/pluralism diagrams, to begin to understand the process of clustering of opinion. By
clustering we mean a group of adjacent cities (where adjacency is defined by the directed graph
associated with the influence matrix) sharing the same opinion. In our analysis, we will only
consider the scenario where there are no zealots in any of the interacting cities. Our (numerically
assisted) rigorous analysis in §4a indicates that for two cities there will always be consensus, and
the type of consensus depends on the amount of interaction between the two cities. In particular,
for weak inter-city interaction any combination is possible, but if the inter-city interaction is
sufficiently large, the two cities will agree on the consensus opinion. Our expectation is that there
will be a similar situation for many cities. However, we further expect that these thresholds where
neighbouring cities must agree will depend on the amount of clustering already present in the
system. We will not do a full study; instead, we will simply focus on a couple of representative
graphs.

(a) Case study: cycle graph

Initially place the individual cities on a line. For our case study we assume nearest-neighbour
interaction only, i.e. city j directly interacts with cities j — 1 and j + 1 only. Moreover, we assume
a cycle graph, so if there are n cities, then city n interacts with city 1, and city 1 also interacts
with city n (see figure 12 for the case of n=8). The influence matrix is symmetric with I;; =
1—¢, Ij1j=Ijj 1=¢/2 and I, =I,1 =¢€/2. At this point in time the problem is beyond a
rigorous (or numerically assisted) analysis; instead, we do some numerics to gain insight into
the dynamics.

Regarding the steady-state solutions, when € = 0, the cities are all uncoupled. Consequently,
the steady-state behaviour is precisely that associated with the one-city model studied in §2.
For each city the only steady states are

(aj, b)) €{(1,0),(0,1), (3, $)}-
For the purposes of labelling, set
0.,=(1,0, Op=(0,1) and O13=(3 %)

For the one-city model both O, and Oy, are stable, and the linearization has two real and negative
eigenvalues, while O7/3 is an unstable saddle point. A steady state for the full system when
€ =0 can be thought of as a vector where each entry is one of O,, Op or Oy/3. This steady state
will be stable for the full system if none of the entries is O1/3, and all of the eigenvalues of the
linearization will be real and negative; otherwise, each entry which has O1,3 will bring with it
one real and positive eigenvalue. A steady state for the full system will be hyperbolic, so by
the implicit function theorem (IFT) there will be an €y > 0 such that this solution will continue
and have the same type of stability for € < ¢y. Consequently, for small inter-city interactions the
results are derived from those of the one-city model. In particular, if the original steady state has
no entries with O3, then the continued state will be stable.

Assume the state when € = 0 has no entries with O3, so it is stable. As ¢ increases, the IFT can
no longer be relied upon to provide stable solutions as continuations from the uncoupled case.
For an example of what can happen, assume there are n = 50 cities. Assume that when € =0, cities
1 through 1 4 m are O,, while the remaining cities are Oy, (1 + m adjoining cities share opinion A,
while the rest share opinion B). Using the Matlab function f sol ve, we numerically continue this
solution. We find, for 0 < m < 3, there is a saddle-node bifurcation at € = egy (see table 3); however,
for m > 4 there is no such bifurcation, and the solution continues and is stable until € ~ 0.99. For
the case of two cities discussed in §4a the saddle-node bifurcation takes place at a slightly larger
value, esn ~ 0.1667. Note the generic (and probably expected) phenomenon that the more cities
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Figure 12. The cycle graph network for n = 8 cities in which there is nearest-neighbour interaction.
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Table 3. The values for which a saddle-node bifurcation takes place for 50 cities under the assumption that, when € = 0, city
1through city T+ m have opinion A, and all the other cities have opinion B.

m 0 1 ) 3 >4
esn 0.1410 03134 0.4879 0.6291 >0.99

who hold the same opinion and directly talk to each other, then the more outside influence this
smaller subnetwork can withstand without changing its opinion.

What happens dynamically to perturbations of a steady state near the saddle-node bifurcation
point? For the sake of clarity, suppose m =1, and for € <0.3134 write the solution at € =0 as
(04,04, Oy, ..., Op). It is seen numerically that an initial condition of (1,1,0, ..., 0) (with each entry
having a bit of random noise added) decays to the stable solution. On the other hand, suppose
€ > 0.3134 (but not by too much). It is seen that this same initial condition initially appears
to converge to the seeming continuation of (O, O, Oy, . .., Op) (Which no longer exists) before
undertaking a quick transition and eventually converging to the solution (O, Oy, Oy, . .., Op) (all
cities share opinion B). Now, the initial condition could also be thought of as a perturbation
of the continuation of the unstable solution, (O,, Og, O1/3, Oy, ..., Op, O1/3), which continues to
exist for € > 0.3134. When n = 50, this solution has an unstable manifold of dimension two, and
a stable manifold of dimension 98. Consequently, the trajectory attached to the initial condition
initially appears to converge to the steady state (Oy, Og, O1/3, Oy, . .., Op, O1/3) by following the
stable manifold before eventually following the unstable manifold to its final destination.

We now consider the effect of having several clumps of cities, with each clump having a
different shared opinion. The primary idea behind the following discussion is an idea familiar to
those who study the dynamics of interacting waves: if the waves are sufficiently separated, then
to leading order the dynamical behaviour of each individual wave ignores the adjacent waves
(e.g. see [33-36] and [37, ch. 10.7]). Thus, we can use the results of table 3 to better understand the
dying and merging of opinion as a function of time.

For our first example, take two cities having opinion A, and separate them by two cities which
share opinion B, (...,0p, O, Op, Oy, Oy, Oy, . . .). Suppose € < 0.1410. As each individual city is
itself stable, the expectation is that this configuration will be stable, and the two cities will retain
opinion A. This is precisely what is seen in figure 13a. Now suppose € > 0.1410, so the continuation
of the stable solution (O, Oy, ..., Op) does not exist, but the continuation of the unstable solution,
(Oa,01/3,0p,...,0p,01,3), does exist. For one city the initial condition (O, Oy, ..., Op) can be
thought of as a perturbation of the unstable solution. The dynamics are such that for some time the
solution will look like the continuation of (the non-existent) (O, Oy, . . ., Op), but then there will be
a quick transition to the stable solution, (Oy, Oy, . .., Op). The expectation is that the configuration
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Figure 13. Two simulations when cities 24 and 27 initially hold opinion A (red), and all other cities hold opinion B (blue). A
vertical strip in each panel represents the time evolution of opinion in a particular city. The saddle-node bifurcation point for
an individual city is esy ~ 0.1410. (a) The result when € = 0.137, and (b) the result when € = 0.145. In (a), cities 24 and 27
retain opinion A for all time, while in (b) each of these cities changes over to opinion B after approximately 75 time units. (Online
version in colour.)

with two cities will have the same behaviour: first, it will appear as if each city retains opinion A,
but then there will be a quick transition to both cities having opinion B. This is precisely what we
see from the simulation results presented in figure 13b.

For our second example, suppose we take two groups of two cities having opinion A, and
separate the two groups by a group of three cities having opinion B. The expectation is that, for
€ < 0.3134, this configuration will be stable, and each of the two cities will retain opinion A. This
is what is seen in figure 14a. On the other hand, if € > 0.3134, then, as we have already seen,
a single group of two cities will eventually change their opinion and take on the surrounding
opinion. Consequently, we expect the same for two groups of two cities, and this is what is seen
in figure 14b.

For our final example, we take two groups of three cities having opinion A, and separate the
two groups by a group of two cities having opinion B. The expectation is that, for ¢ <0.3134,
this configuration will be stable, and each of the two outside groups will retain opinion A, and
the inside group will retain opinion B. This is what is seen in figure 15a. On the other hand, if
€ > 0.3134 (but not by too much), then the group of two cities no longer exists as a steady-state
solution, and dynamically we expect that a perturbation will eventually take on the opinion of
the surrounding groups. Consequently, we expect that eventually there will be a group of eight
cities which share opinion A, which will be stable. This is exactly what we see in figure 15b.

In conclusion, we see strong evidence for the conjecture that the dynamics associated with
widely separated clusters are essentially determined by the dynamics associated with a single
cluster. In particular, the saddle-node bifurcation point associated with the cluster size provides
a threshold for a cluster of one opinion to form the opinion of its neighbours.

(b) Case study: cycle graph with a hub

We finally, and briefly, consider the case of a cycle graph with the addition of a hub at the centre
(figure 16). The hub city has influence i on each of the cities in the cycle, whereas each city in
the cycle has influence i/n on the hub city. The cities on the cycle interact with each other in the
same nearest-neighbour manner as described in §5a. We consider the question of what happens
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Figure 14. Two simulations when cities 24—25 and 2930 initially hold opinion A, and all other cities hold opinion B. The saddle-
node bifurcation point for an individual group is €5y ~ 0.3134. () The results when € = 0.310, and (b) results when € = 0.316.
(Online version in colour.)
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Figure 15. Two simulations when cities 24—26 and 29-3Tinitially hold opinion A, and all other cities hold opinion B. The saddle-
node bifurcation point for the individual group of two is €5y ~ 0.3134. (a) The results when € = 0.310, and (b) the results when
€ = 0.316. (Online version in colour.)

to overall opinion on the network if there are zealots in the hub. In the special case that each of
the cities on the cycle graph has the same opinion, the system collapses to the two-city model
discussed in §4. In the cartoon of figure 5, the hub city is city 1, the conglomeration of cities
on the cycle graph is city 2 and the inter-city reaction rates satisfy i1 =i, =i. Note that in this
submanifold of solutions we have consensus/pluralism diagrams exactly as presented therein.
For a particular example, consider the situation presented in §4b. The hub has a zealot
subpopulation who hold opinion A, while the cities on the cycle graph have no zealots of either
persuasion. As we see from figure 8, if the proportion of zealots is sufficiently large (p lies to
the right of the vertical curve), then the hub will have consensus on opinion A no matter the
opinion in the cities on the cycle. Moreover, if the interaction is sufficiently large (i is above the
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Figure 16. A cycle graph with a hub. The cities on the cycle graph are not labelled, whereas the hub city is denoted by ‘H.
Each city on the cycle graph is connected to a hub city. On the cycle graph, the n cities have nearest-neighbour interaction

with strength € /2. The hub interacts with each city on the circle with strength i, while each city interacts with the hub with
strengthi/n.

horizontal curve), then each city on the cycle graph will also have consensus on opinion A. In
other words, if (p, i) are chosen to be in the upper right portion of the figure, then all cities share
opinion A. Note that this conclusion does not require a large proportion of zealots in the hub
city, nor a large influence on the cycle cities from the hub city. While we have not done a formal
analysis, numerical simulations indicate that this configuration is stable for the full system even
if the opinions in each of the cities on the cycle graph are not assumed to be identical.

6. Conclusion

We reconsidered the three-state mean-field opinion model of [23] from the perspective of
pluralism and consensus associated with the stable fixed points. This allowed for a simplification
of the presentation of the results; in particular, it allowed for a better understanding of the role of
zealots in opinion formation.

We extended this model to an ODE on a graph, where the nodes correspond to individual
cities, and the edges correspond to reaction rates between the cities. In the case of two cities,
we discuss how the (perhaps competing) presence of zealots in one or both of the cities affects
consensus. In particular, we show that if one city has enough zealots, and the interaction between
the two cities is sufficiently strong, then there will be consensus in both cities on the opinion
shared by the zealots.

In the event that there are many cities, we considered two case studies: a cycle graph,
and a cycle graph with a hub. In the case of the cycle graph, we considered the problem of
opinion clustering, and demonstrated via some elementary stability analysis that the clustering
phenomena could be understood (at least in some cases) as a consequence of a saddle-node
bifurcation. In the case of the cycle graph with a hub, we looked at the situation where there are
zealots in the hub, and considered how the opinion of the zealots could propagate and dominate
the entire network.

There are many subsequent questions to be considered, especially when there are many cities.
Examples include the following;:

(a) What if the influence between cities was a function of similarity, i.e. what if the rate
increased if cities shared the same opinion, but decreased if cities differed in opinion?

(b) How does the distribution of zealots across the cities affect opinion formation, and in
particular the rise of a network-wide consensus? Is it better to influence the network by
concentrating all the zealots in a small number of cities, or should the zealots be widely
distributed?
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(c) To what extent can dominant voice models be generalized through this network
structure? In particular, what happens to opinion formation on the whole network if there
are competing hubs?

These, and others, will be the subject of future research.
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